If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20t+5t^2=100
We move all terms to the left:
20t+5t^2-(100)=0
a = 5; b = 20; c = -100;
Δ = b2-4ac
Δ = 202-4·5·(-100)
Δ = 2400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2400}=\sqrt{400*6}=\sqrt{400}*\sqrt{6}=20\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{6}}{2*5}=\frac{-20-20\sqrt{6}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{6}}{2*5}=\frac{-20+20\sqrt{6}}{10} $
| -2x+12=-5x-3 | | 7/x=4/8 | | 3v+8v=26 | | -1=x-4/9 | | 7-(x)=1 | | -5=x3-8 | | -17/4+3h=37/4 | | -2s-24+s^2=0 | | 6+8m=2m | | g3+ 7= 11 | | 5g-7=(-3g)+2 | | k/4–1=2 | | 2+9s=9s+2 | | X-13=8(x-2)-6.5(x-2)-9x+3.25(2x) | | 16(2*x-1)=4(x+3)+2*x | | g/3-10=-9 | | 3+9j=-3+7j | | 4(x-2)^2+320=0 | | s/3+9=6 | | 2h/3+1=3h-4/2 | | (-4-6i)-(3+2i)=0 | | 1/2y-2=2y-23 | | 3h–5=4 | | -105=-7(m+8) | | 6b-7+1+13=6b+7 | | 18+15q=3 | | 0.15x+0.05(20-x)=0.10(2) | | k=-14+6 | | −16t2+64t+43=0 | | 7=3c+1 | | 3/4n+16=21/8n | | 5p+11=1 |